Lecture Notes, January 7 \& 12, 2010

The Edgeworth Box

2 person, 2 good, pure exchange economy
Fixed positive quantities of X and Y , and two households, 1 and 2.
Household 1 is endowed with \bar{X}^{1} of good X and \bar{Y}^{1} of good Y, utility function $\mathrm{U}^{1}\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right)$. Household 2 is endowed with \bar{X}^{2} of good X and \bar{Y}^{2} of good Y , utility function $\mathrm{U}^{2}\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right)$

$$
\begin{aligned}
& \mathrm{X}^{1}+\mathrm{X}^{2}=\bar{X}^{1}+\bar{X}^{2} \equiv \bar{X}, \\
& \mathrm{Y}^{1}+\mathrm{Y}^{2}=\bar{Y}^{1}+\overline{\mathrm{Y}}^{2} \equiv \bar{Y} .
\end{aligned}
$$

Each point in the Edgeworth box represents an attainable choice of X^{1} and $\mathrm{X}^{2}, \mathrm{Y}^{1}$ and Y^{2}.
1's origin is at the southwest corner; 1's consumption increases as the allocation point moves in a northeast direction; 2's increases as the allocation point moves in a southwest direction. Superimpose indifference curves on the Edgeworth Box.

Competitive Equilibrium

($\mathrm{p}_{\mathrm{x}}^{\mathrm{o}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{o}}$) so that $\left(\mathrm{X}^{01}, \mathrm{Y}^{01}\right)$ maximizes $\mathrm{U}^{1}\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right)$ subject to
$\left(\mathrm{p}_{\mathrm{x}}^{\mathrm{o}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{o}}\right) \cdot\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right) \leq\left(\mathrm{p}_{\mathrm{x}}^{\mathrm{o}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{o}}\right) \cdot\left(\bar{X}^{1}, \bar{Y}^{1}\right)$ and
$\left(\mathrm{X}^{\mathrm{o2}}, \mathrm{Y}^{\mathrm{o} 2}\right)$ maximizes $\mathrm{U}^{2}\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right)$ subject to
$\left(\mathrm{p}_{\mathrm{x}}^{\mathrm{o}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{o}}\right) \cdot\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right) \leq\left(\mathrm{p}_{\mathrm{x}}^{\mathrm{o}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{o}}\right) \cdot\left(\bar{X}^{2}, \bar{Y}^{2}\right)$, and
$\left(\mathrm{X}^{01}, \mathrm{Y}^{01}\right)+\left(\mathrm{X}^{\mathrm{o2}}, \mathrm{Y}^{02}\right)=\left(\bar{X}^{1}, \bar{Y}^{1}\right)+\left(\bar{X}^{2}, \bar{Y}^{2}\right)$
or $\quad\left(\mathrm{X}^{01}, \mathrm{Y}^{01}\right)+\left(\mathrm{X}^{02}, \mathrm{Y}^{02}\right) \leq\left(\bar{X}^{1}, \bar{Y}^{1}\right)+\left(\bar{X}^{2}, \bar{Y}^{2}\right)$, where the inequality holds co-ordinatewise and any good for which there is a strict inequality has a price of 0 .

Pareto efficiency:

An allocation is Pareto efficient if all of the opportunities for mutually desirable reallocation have been fully used. The allocation is Pareto efficient if there is no available reallocation that can improve the utility level of one household while not reducing the utility of any household.

Tangency of 1 and 2's indifference curves : Pareto efficient allocations.
Pareto efficient allocation:

Economics 113
Mr. Troy Kravitz, UCSD
Prof. R. Starr Winter 2010
$\left(\mathrm{X}^{\mathrm{o1}}, \mathrm{Y}^{\mathrm{o1}}\right),\left(\mathrm{X}^{\mathrm{o2}}, \mathrm{Y}^{02}\right)$ maximizes
$\mathrm{U}^{1}\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right)$ subject to
$\mathrm{U}^{2}\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right) \geq \mathrm{U}^{\mathrm{o2}}$ (typically equality will hold and $\mathrm{U}^{02}=\mathrm{U}^{2}\left(\mathrm{X}^{\mathrm{o2}}, \mathrm{Y}^{\mathrm{o2}}\right)$) and subject to the resource constraints

$$
\begin{aligned}
& \mathrm{X}^{1}+\mathrm{X}^{2}=\bar{X}^{1}+\bar{X}^{2} \equiv \bar{X} \\
& \mathrm{Y}^{1}+\mathrm{Y}^{2}=\bar{Y}^{1}+\bar{Y}^{2} \equiv \bar{Y}
\end{aligned}
$$

Equivalently, $\quad \mathrm{X}^{2}=\bar{X}-\mathrm{X}^{1}, \quad \mathrm{Y}^{2}=\bar{Y}-\mathrm{Y}^{1}$
Solving for Pareto efficiency (Assuming differentiability and an interior solution):

Lagrangian

$$
\mathrm{L} \equiv \mathrm{U}^{1}\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right)+\lambda\left[\mathrm{U}^{2}\left(\bar{X}-\mathrm{X}^{1}, \bar{Y}-\mathrm{Y}^{1}\right)-\mathrm{U}^{\mathrm{o} 2}\right]
$$

$\frac{\partial L}{\partial X^{1}}=\frac{\partial U^{1}}{\partial X^{1}}-\lambda \frac{\partial U^{2}}{\partial X^{2}}=0$
$\frac{\partial L}{\partial Y^{1}}=\frac{\partial U^{1}}{\partial Y^{1}}-\lambda \frac{\partial U^{2}}{\partial Y^{2}}=0$
$\frac{\partial L}{\partial \lambda}=\mathrm{U}^{2}\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right)-\mathrm{U}^{\mathrm{o} 2}=0$
This gives us then the condition

$$
\mathrm{MRS}_{\mathrm{xy}}^{1}=\frac{\frac{\partial U^{1}}{\frac{\partial X^{1}}{}} \frac{\frac{\partial U^{1}}{\partial Y^{1}}}{\frac{\partial X^{2}}{\partial Y^{2}}}}{\frac{\partial U^{2}}{\partial}}=\mathrm{MRS}_{\mathrm{xy}}^{2} \text { or equivalently }
$$

$\operatorname{MRS}^{1}{ }_{\mathrm{xy}}=\left.\frac{\partial Y^{1}}{\partial X^{1}}\right|_{U^{1}=\text { constant }}=\left.\frac{\partial Y^{2}}{\partial X^{2}}\right|_{U^{2}=\text { constant }}=\mathrm{MRS}_{\mathrm{xy}}^{2}$
Pareto efficient allocation in the Edgeworth box: the slope of 2's indifference curve at an efficient allocation will equal the slope of 1's indifference curve; the points of tangency of the two curves.
contract curve $=$ individually rational Pareto efficient points

Market allocation

$\mathrm{p}^{\mathrm{x}}, \mathrm{p}^{\mathrm{y}}$
Household 1:Choose $\mathrm{X}^{1}, \mathrm{Y}^{1}$, to maximize $\mathrm{U}^{1}\left(\mathrm{X}^{1}, \mathrm{Y}^{1}\right)$ subject to
$\mathrm{p}^{\mathrm{x}} \mathrm{X}^{1}+\mathrm{p}^{\mathrm{y}} \mathrm{Y}^{1}=\mathrm{p}^{\mathrm{x}} \bar{X}^{1}+\mathrm{p}^{\mathrm{y}} \bar{Y}^{1}=\mathrm{B}^{1}$
budget constraint is a straight line passing through the endowment point (\bar{X}^{1}, \bar{Y}^{1}) with slope $-\frac{p^{x}}{p^{y}}$.

Lagrangian
$L=U^{1}\left(X^{1}, Y^{1}\right)-\lambda\left[p^{x} X^{1}+p^{y} Y^{1}-B^{1}\right]$
$\frac{\partial L}{\partial X}=\frac{\partial U^{1}}{\partial X^{1}}-\lambda p^{X}=0$
$\frac{\partial L}{\partial Y}=\frac{\partial U^{1}}{\partial Y^{1}}-\lambda p^{y}=0$
Therefore, at the utility optimum subject to budget constraint we have

$$
\begin{aligned}
& \operatorname{MRS}_{\mathrm{xy}}^{1}=\frac{\frac{\partial U^{1}}{\partial X^{1}}}{\frac{\partial U^{1}}{\partial Y^{1}}}=\frac{p^{x}}{p^{y}} ; \text { Similarly for household } 2, \\
& \operatorname{MRS}_{\mathrm{xy}}^{2}=\frac{\frac{\partial U^{2}}{\partial X^{2}}}{\frac{\partial U^{2}}{\partial Y^{2}}}=\frac{p^{x}}{p^{y}}
\end{aligned}
$$

Equilibrium prices: $\mathrm{p}^{* x}$ and $\mathrm{p}^{* y}$ so that

$$
\begin{aligned}
\mathrm{X}^{* 1}+\mathrm{X}^{* 2} & =\bar{X}^{1}+\bar{X}^{2} \equiv \bar{X} \\
\mathrm{Y}^{* 1}+\mathrm{Y}^{* 2} & =\overline{\mathrm{Y}}^{1}+\overline{\mathrm{Y}}^{2} \equiv \overline{\mathrm{Y}}
\end{aligned}
$$

(market clearing)
where $\mathrm{X}^{* \mathrm{i}}$ and $\mathrm{Y}^{* \mathrm{i}}, \mathrm{i}=1,2$, are utility maximizing mix of X and Y at prices $\mathrm{p}^{* x}$ and $p^{* y}$.

$$
\begin{aligned}
& -\left.\frac{\partial Y^{1}}{\partial X^{1}}\right|_{U^{1}=U^{1 *}}=\frac{\frac{\partial U^{1}}{\partial X^{1}}}{\frac{\partial U^{1}}{\partial Y^{1}}}=\frac{p^{x}}{p^{y}} \\
& \frac{p^{x}}{p^{y}}=\frac{\frac{\partial U^{2}}{\partial X^{2}}}{\frac{\partial U^{2}}{\partial Y^{2}}}=-\left.\frac{\partial Y^{2}}{\partial X^{2}}\right|_{U^{2}=U^{2 *}}
\end{aligned}
$$

The price system decentralizes the efficient allocation decision.

Set Theory

Logical Inference

Let A and B be two logical conditions, like $\mathrm{A}=$ ="it's sunny today" and $\mathrm{B}=$ "the light outside is very bright"
$\mathrm{A} \Rightarrow \mathrm{B}$
A implies B, if A then B
$A \Leftrightarrow B$
A if and only if B, A implies B and B implies A, A and B are equivalent conditions
Definition of a Set
\{ \}
$\{\mathrm{x} \mid \mathrm{x}$ has property P$\}$
$\{1,2, \ldots, 9,10\}=\{x \mid x$ is an integer, $1 \leq \mathrm{x} \leq 10\}$.
Elements of a set

$$
\begin{aligned}
& x \in A ; y \notin A \\
& x \neq\{x\} \\
& x \in\{x\} \\
& \phi \equiv \text { the empty set }(\equiv \text { null set }) \text {, the set with no elements. }
\end{aligned}
$$

Subsets
$A \subset B$ or $A \subseteq B$ if $\mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{x} \in \mathrm{B}$
$A \subset A$ and $\phi \subset A$.
Set Equality
$A=B$ if A and B have precisely the same elements
$\mathrm{A}=\mathrm{B}$ if and only if $A \subset B$ and $B \subset A$.

Mr. Troy Kravitz, UCSD
Set Union
$A \cup B$
$A \cup B=\{x ; ; ; x \in A$ or $x \in B\} \quad$ ('or' includes 'and')
Set Intersection
\cap
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
If $A \cap B=\phi$ we say that A and B are disjoint.
Theorem 6.1: Let A, B, C be sets,
a. $\quad A \cap A=A, A \cup A=A$
b. $\quad A \cap B=B \cap A, A \cup B=B \cup A$
(idempotency)
c. $\quad A \cap(B \cap C)=(A \cap B) \cap C$
(commutativity)
(associativity)
$A \cup(B \cup C)=(A \cup B) \cup C$
d. $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(distributivity)
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Complementation (set subtraction)
1

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

Cartesian Product
ordered pairs
$A \times B=\{(x, y) \mid x \in A, y \in B\}$.
Note: If $x \neq y$, then $(x, y) \neq(y, x)$.
$\mathbf{R}=$ The set of real numbers
$\mathbf{R}^{\mathrm{N}}=\mathrm{N}$-fold Cartesian product of R with itself.
$\mathbf{R}^{\mathrm{N}}=\mathrm{R} \times \mathrm{R} \times \mathrm{R} \times \ldots \times \mathrm{R}$, where the product is taken N times.
The order of elements in the ordered N -tuple ($\mathrm{x}, \mathrm{y}, \ldots$) is essential. If $x \neq y,(x, y, \ldots) \neq(y, x, \ldots)$.

\mathbf{R}^{N}, Real N -dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.
$\mathrm{R}^{2}=$ plane
$\mathrm{R}^{3}=3$-dimensional space
$\mathrm{R}^{\mathrm{N}}=\mathrm{N}$-dimensional Euclidean space
Definition of R:
$R=$ the real line

$$
\pm \infty \notin \mathrm{R}
$$

Mr. Troy Kravitz, UCSD
$+,-, \times, \div$
closed interval : $[\mathrm{a}, \mathrm{b}] \equiv\{\mathrm{x} \mid \mathrm{x} \in \mathrm{R}, \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$.
R is complete. Nested intervals property: Let $x^{v}<y^{v}$ and $\left[x^{v+1}, y^{v+1}\right] \subseteq\left[x^{v}, y^{v}\right]$, $v=1,2,3, \ldots$. Then there is $\mathrm{z} \in \mathrm{R}$ so that $\mathrm{z} \in\left[\mathrm{x}^{v}, \mathrm{y}^{v}\right]$, for all v.
$R^{N}=\mathrm{N}$-fold Cartesian product of R.
$x \in R^{N}, x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
x_{i} is the ith co-ordinate of x .
$\mathrm{x}=$ point (or vector) in R^{N}
Algebra of elements of R^{N}

$$
\begin{aligned}
& x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{N}+y_{N}\right) \\
& \mathbf{0}=(0,0,0, \ldots, 0), \text { the origin in N-space } \\
& x-y \equiv x+(-y)=\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}, \ldots, \mathrm{x}_{N}-\mathrm{y}_{N}\right) \\
& t \in R, x \in R^{N}, \text { then } t x \equiv\left(t x_{1}, t x_{2}, \ldots, t x_{N}\right) .
\end{aligned}
$$

$x, y \in R^{N}, x \cdot y=\sum_{i=1}^{N} x_{i} y_{i}$. If $\mathrm{p} \in \mathrm{R}^{\mathrm{N}}$ is a price vector and $\mathrm{y} \in \mathrm{R}^{\mathrm{N}}$ is an economic action, then $\mathrm{p} \cdot \mathrm{y}=\sum_{n=1}^{N} p_{n} y_{n}$ is the value of the action y at prices p .

Norm in R^{N}, the measure of distance

$$
|x| \equiv\|x\| \equiv \sqrt{x \cdot x} \equiv \sqrt{\sum_{i=1}^{N} x_{i}^{2}} .
$$

Let $x, y \in R^{N}$. The distance between x and y is $\|x-y\|$.

$$
\begin{aligned}
& |\mathrm{x}-\mathrm{y}|=\sqrt{\Sigma_{i}\left(x_{i}-y_{i}\right)^{2}} . \\
& \|x-y\| \geq 0 \text { all } x, y \in R^{N} \\
& |\mathrm{x}-\mathrm{y}|=0 \text { if and only if } \mathrm{x}=\mathrm{y} .
\end{aligned}
$$

Limits of Sequences

$\mathrm{x}^{v}, v=1,2,3, \ldots$,
Example: $x^{v}=1 / v . \quad 1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots \quad x^{v} \rightarrow 0$.
Formally, let $x^{i} \in R, i=1,2, \ldots$. Definition: We say $x^{i} \rightarrow x^{0}$ if for any $\varepsilon>0$, there is $q(\varepsilon)$ so that for all $q^{\prime}>q(\varepsilon),\left|x^{q^{\prime}}-x^{0}\right|<\varepsilon$.

Mr. Troy Kravitz, UCSD
So in the example $x^{v}=1 / v, q(\varepsilon)=1 / \varepsilon$
Let $x^{i} \in R^{N}, i=1,2, \ldots$. We say that $x^{i} \rightarrow x^{0}$ if for each co-ordinate $n=1,2, \ldots, N, x_{n}^{i} \rightarrow x_{n}^{0}$.

Theorem 7.1: Let $x^{i} \in R^{N}, i=1,2, \ldots$. Then $x^{i} \rightarrow x^{0}$ if and only if for any ε there is $q(\varepsilon)$ such that for all $q^{\prime}>q(\varepsilon),\left\|x^{q^{\prime}}-x^{0}\right\|<\varepsilon$.
x^{0} is a cluster point of $S \subseteq \mathbf{R}^{N}$ if there is a sequence $\mathrm{x}^{v} \in \mathrm{R}^{\mathrm{N}}$ so that $\mathrm{x}^{v} \rightarrow \mathrm{x}^{0}$.

Open Sets
Let $X \subset R^{N} ; \mathrm{X}$ is open if for every $x \in X$ there is an $\varepsilon>0$ so that $\|x-y\|<\varepsilon$ implies $y \in X$.

Open interval in R: $(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{R}, \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
ϕ and R^{N} are open.

Closed Sets

Example: Problem - Choose a point x in the closed interval [a, b] (where $0<\mathrm{a}<\mathrm{b}$) to maximize x^{2}. Solution: $x=b$.
Problem - Choose a point x in the open interval (a, b) to maximize x^{2}. There is no solution in (a, b) since $\mathrm{b} \notin(\mathrm{a}, \mathrm{b})$.

A set is closed if it contains all of its cluster points.
Definition: Let $X \subset R^{N} . \mathrm{X}$ is said to be a closed set if for every sequence $\mathrm{x}^{v}, v=1,2$, $3, \ldots$, satisfying,
(i) $x^{v} \in X$, and
(ii) $\quad x^{v} \rightarrow x^{0}$
it follows that $x^{0} \in X$.
Examples: A closed interval in $\mathrm{R},[\mathrm{a}, \mathrm{b}$] is closed
A closed ball in R^{N} of radius r, centered at $c \in R^{N},\left\{x \in R^{N}| | x-c \mid \leq r\right\}$ is a closed set.

A line in R^{N} is a closed set
But a set may be neither open nor closed (for example the sequence $\{1 / v\}, v=1$, $2,3,4, \ldots$ is not closed in R, since 0 is a limit point of the sequence but is not an element of the sequence; it is not open since it consists of isolated points).

Note: Closed and open are not antonyms among sets. ϕ and R^{N} are each both closed and open.

Let $\mathrm{X} \subseteq \mathrm{R}^{\mathrm{N}}$. The closure of X is defined as

$$
\bar{X} \equiv\left\{y \mid \text { there is } x^{v} \in X, v=1,2,3, \ldots, \text { so that } x^{v} \rightarrow y\right\}
$$

For example the closure of the sequence in $R,\{1 / v \mid v=1,2,3,4, \ldots\}$ is $\{0\} \cup\{1 / v \mid v=1,2,3,4, \ldots\}$.

Concept of Proof by contradiction: Suppose we want to show that $A \Rightarrow B$. Ordinarily, we'd like to prove this directly. But it may be easier to show that $[$ not $(A \Rightarrow B)]$ is false. How? Show that [A \& (not B)] leads to a contradiction. A: $x=1, B: x+3=4$. Then [A \& (not B)] leads to the conclusion that $1+3 \neq 4$ or equivalently $1 \neq 1$, a contradiction. Hence [A \& (not B)] must fail so $A \Rightarrow B$. (Yes, it does feel backwards, like your pocket is being picked, but it works).

Theorem 7.2: Let $X \subset R^{N}$. X is closed if $\mathrm{R}^{\mathrm{N}} \backslash \mathrm{X}$ is open.
Proof: Suppose $R^{N} \backslash X$ is open. We must show that X is closed. If $X=R^{N}$ the result is trivially satisfied. For $X \neq R^{N}$, let $x^{v} \in X, x^{v} \rightarrow x^{0}$. We must show that $x^{0} \in X$ if $R^{N} \backslash X$ is open. Proof by contradiction. Suppose not. Then $x^{0} \in R^{N} \backslash X$. But $R^{N} \backslash X$ is open. Thus there is an ε neighborhood about x^{0} entirely contained in $\mathrm{R}^{\mathrm{N}} \backslash \mathrm{X}$. But then for v large, $\mathrm{x}^{v} \in \mathrm{R}^{\mathrm{N}} \backslash \mathrm{X}$, a contradiction. Therefore $\mathrm{x}^{0} \in \mathrm{X}$ and X is closed. QED

Theorem 7.3: 1. $X \subset \bar{X}$
2. $X=\bar{X}$ if and only if X is closed.

Bounded Sets

Def: $K(k)=\left\{\left.x\right|_{x} \in R^{N},\left|x_{i}\right| \leq k, i=1,2, \ldots, N\right\} \quad=$ cube of side 2 k (centered at the origin).
Def: $X \subset R^{N} . \mathrm{X}$ is bounded if there is $k \in R$ so that $X \subset K(k)$.

Compact Sets

THE IDEA OF COMPACTNESS IS ESSENTIAL!
Def: $X \subset R^{N}$. X is compact if X is closed and bounded.
Finite subcover property: An open covering of X is a collection of open sets so that X is contained in the union of the collection. It is a property of compact X that for every open covering there is a finite subset of the open covering whose union also contains X . That is, every open covering of a compact set has a finite subcover.

Boundary, Interior, etc.
$X \subset R^{N}$, Interior of $X=\{y \mid y \in X$, there is $\varepsilon>0$ so that $\|x-y\|<\varepsilon$ implies $x \in X\}$ Boundary $X \equiv \bar{X} \backslash$ Interior X

Set Summation in R^{N}
Let $\mathrm{A} \subseteq \mathrm{R}^{\mathrm{N}}, \mathrm{B} \subseteq \mathrm{R}^{\mathrm{N}}$. Then

$$
A+B \equiv\{x \mid x=a+b, a \in A, b \in B\}
$$

The Bolzano-Weierstrass Theorem, Completeness of R^{N}.

Mr. Troy Kravitz, UCSD
Theorem 7.4 (Nested Intervals Theorem): By an interval in R^{N}, we mean a set I of the form $I=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) \mid a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}, \ldots, a_{N} \leq x_{N} \leq b_{N}, a_{i}, b_{i} \in R\right\}$. Consider a sequence of nonempty closed intervals I_{k} such that

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots \supseteq I_{k} \supseteq
$$

Then there is a point in R^{N} contained in all the intervals. That is, $\exists x^{o} \in \bigcap_{i=1}^{\infty} I_{i}$ and therefore $\bigcap_{i=1}^{\infty} I_{i} \neq \phi$; the intersection is nonempty.

Proof: Follows from the completeness of the reals, the nested intervals property on R.
Corollary (Bolzano-Weierstrass theorem for sequences): Let $x^{i}, i=1,2,3, \ldots$ be a bounded sequence in R^{N}. Then x^{i} contains a convergent subsequence.

Proof 2 cases: x^{i} assumes a finite number of values, x^{i} assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of compactness that an infinite sequence on a compact set has a convergent subsequence whose limit is in the compact set.

